
April 1, 1986

Dr. Landauer:

Enclosed is a description of the time-reversible language JA-
NUS, along with some sample programs. I showed these to you
briefly when you spoke here last week on physical limits of com-
putation.

JANUS was written by myself and Howard Derby for a class
at Caltech in 1982 (or thereabouts). The class had nothing to do di-
rectly with this project. We did it out of curiosity over whether such
an odd animal as this was possible, and because we were interested
in knowing where we put information when we programmed. JA-
NUS forced us to pay attention to where our bits went since none
could be thrown away.

JANUS was fully implemented as described as is bug-free (to
our knowledge) despite the disclaimer in the document that it is a
“throw-away piece of code.” If it still exists, it is on backup tapes
somewhere at Caltech. Hope you find it interesting.

sincerely,
Chris Lutz
IBM Almaden Research Center
K33/801
(LUTZ@ALMVMA)

JANUS: A TIME-REVERSIBLE LANGUAGE
By Christopher Lutz and Howard Derby, circa 1982

JANUS is a compiler and interpreter for the time-reversible
language JANUS. The JANUS compiler is written in SLIMEULA,
and compiles the code into an internal SLIMEULA Class structure
which can be interpreted directly. ‘SLIMEULA’ means SIMULA
running on a DECSYSTEM-20.

JANUS is considered to be a throw-away piece of code. It will
not be maintained and is not purported to be robust.

The compiler consists of four major parts: A lexical analyzer
which tokenizes the input stream and generates a symbol table;
a recursive descent parser made of the Init Code of SLIMEULA
Classes; an interpreter which consists of the procedure ’exec’ com-
mon to all of the Classes created in the parsing; and the runtime
command scanner.

A. Lexical Analyzer
The lexical analyzer tokenizes the input stream and sets the global
variables token, token value, and token type in accordance
with the current token. The following terminal classes are recog-
nized:

ident:
An identifier, which is any sequence of letters which is not a
keyword. If it has not been encountered before, it is inserted
into the symbol table. An identifier may name a procedure, a
variable, or both.

num:
A number, which is any sequence of decimal digits.

binop:
A binary operator, which is any of +, -, ! (exclusive OR), <,
>, & (logical AND), | (logical OR), =, # (not equals), <=, >=, *
(multiply), / (divide), and \ (remainder).

This article is a part of the personal letter from Christopher Lutz to Rolf
William Landauer in 1986. Under his permission, this article is placed at
http://tetsuo.jp/ref/janus.html as of today (Aug 13, 2010). All
rights belong to Christopher Lutz.

A semicolon in a program line indicates that the rest of the line is a
comment.

Lower case letters are converted to upper case on input.

B. Parser, and JANUS Language Syntax
The recursive descent parser makes use of a SLIMEULA Class for
every node in the parse tree, except for the root node. The root node
is a subroutine which corresponds to the nonterminal Program in
the grammar below. Every other nonterminal corresponds exactly
to a Class of the same name. This correspondence is the reason for
the slightly atypical presentation of the grammar.

The grammar of the JANUS language is as follows:

[Terminals in quotes or lower case.
{ }* indicates zero or more repetitions.
[] indicates zero or one repetitions.]

Program ::= { ident [’[’ num ’]’] }*
{ ’PROCEDURE’ ident Statements }*

Statements ::= Ifstmt Statements
| Dostmt Statements
| Callstmt Statements
| Readstmt Statements
| Writestmt Statements
| Lvalstmt Statements
| null

Ifstmt ::= ’IF’ Expression
[’THEN’ Statements]
[’ELSE’ Statements]

’FI’ Expression

Dostmt ::= ’FROM’ Expression
[’DO’ Statements]
[’LOOP’ Statements]

’UNTIL’ Expression

Callstmt ::= ’CALL’ ident
| ’UNCALL’ ident

Readstmt ::= ’READ’ ident

Writestmt ::= ’WRITE’ ident

Lvalstmt ::= Lvalue Modstmt
| Lvalue Swapstmt

Modstmt ::= ’+=’ Expression
| ’-=’ Expression
| ’!=’ Expression

Swapstmt ::= ’:’ Lvalue

Expression ::= Minexp
| Minexp binop Expression

Minexp ::= ’(’ Expression ’)’
| ’-’ Expression
| ’~’ Expression
| Lvalue
| Constant

Lvalue ::= ident
| ident ’[’ Expression ’]’

Constant ::= num

For every (ident [’[’ num ’]’]) encountered, the
parser’s root node (procedure parseprog) creates an instance of
Class dotaarray, which contains an array for the storage corre-

1

sponding to the variable ident. The array is of size num, and de-
faults to size 1 when num is not included. A pointer to this class is
placed in the variable column of the symbol table entry for ident.

For every (’PROCEDURE’ ident Statements) encountered,
the root node creates an instance of Class Statements, which
parses Statements. A pointer to this class is placed in the pro-
cedure column of the symbol table entry for ident.

C. Semantics
C.1 Variables
Every variable is contained in an array of integers. All arrays are
named by an ident and must be declared in the (ident [’[’
num ’]’]) section of the program. The size of the array is num
unless ’[’ num ’]’ is omitted, in which case the size defaults
to 1. Array indices go from zero to arraysize−1. All variables are
global. In the second part of the program, a reference to ident
without a subscript is equivalent to ident[0]. All variables are
initialized to zero.

C.2 Expressions
Expressions are evaluated with signed integer arithmetic. The result
of the operators =, *, <, >, <=, and >= is either 0 (for FALSE) or -1
(for TRUE). All operators have the same precedence. Expressions
are evaluated from left to right, except for parenthetization. The
unary operators - (negation) and ~ (logical NOT) bind tightly.

C.3 Modification Operators and the Swap Operator
The modification operators (+=, -=, and !=) and the swap operator
(:) are the only means for changing the value of variables.

The modification operators evaluate the expression on the right,
and modify the variable on the left according to the operator.
+= adds the expression into the variable. -= subtracts it out. !=
exclusive-or’s it in. The expression may not contain the ident of
the variable on the left, since that event could potentially specify a
singular operation.

The swap operator swaps the values of the variables on its
left and right. The ident’s of the variables may appear in the
expression in the subscript of neither variable, since that event
could potentially specify a singular operation.

C.4 Control Structures
Ifstmt is the analog of the conventional IF statement. On en-
try, the Expression after ’IF’ is evaluated. If it is true (non-zero)
then the Statements following ’THEN’ is executed, if there is a
’THEN’ clause. Otherwise the Statements after ’ELSE’ is exe-
cuted, if there is an ’ELSE’ clause. The expression after ’FI’ is
then evaluated an verified to have the same truth as that after the
’IF’. If this is not the case, an error condition has resulted, and the
program halts, returning control to the command interpreter.

Dostmt is the analog of the conventional DO statement. On
entry, the Expression after ’FROM’ is evaluated, and verified to
be true (non-zero). If this is not the case, an error condition has
resulted. The Statements after ’DO’ is then executed, followed
by evaluating the Expression after ’UNTIL’. If the expression is
true, the ’DO’ structure is exited. If it is false, the Statements
after ’LOOP’ is executed. The Expression after ’FROM’ is then
reevaluated, and verified to be false (equal to zero) on penalty of
an error conditions. The Statements after ’DO’ is executed again,
and control loops in this manner until the ’UNTIL’ expression
is found to be true.

C.5 Error Conditions and Time-Reversibility
When an attempt is made to perform an operation that is singular
(destroys information and so cannot be reversed) an “error condi-

tion” results. An error condition could be resolved by reversing the
direction of execution of the program at the point of the attempted
singular operation, but since error conditions are considered ab-
normal and do not normally happen in “working” programs, the
run-time system responds by simply halting execution of the pro-
gram. This allows examination of the state at the time of the error
condition.

Subscripts out of range are considered an error condition.

C.6 Procedures
All executable statements are contained in exactly one procedure,
which is named by the ident following ’PROCEDURE’. A pro-
cedure can be executed in the foreward direction by the ’CALL’
ident statement, or in reverse by the ’UNCALL’ ident statement.
Note that the direction of execution is toggled each time ’UNCALL’
is used. For example, a procedure which is ’UNCALL’ed from a pro-
cedure which is itself ’UNCALL’ed from the top level is executed
from top to bottom.

Procedures are infinitely recursive, and foreward references are
allowed.

C.7 Read and Write
The ’READ’ statement can be considered a swap between a variable
and the outside world. It prints the current value of the variable, and
replaces it with the num typed by the user to the run-time system. If
it is to be time-reversible, when executed backwards, the user must
retype its previous value when it was executed forwards.

The ’WRITE’ statement simply types the value of the variable.

C.8 Run Time System
The JANUS run time system is provided to allow the user to initial-
ize and inspect variables, call or uncall procedures, and otherwise
control the interpretation of his code. When JANUS is run, it will
respond with the query “file?”, asking for the name of the file to
be parsed. After parsing, JANUS will prompt with “>”. Commands
may be typed to JANUS in either upper or lower case. The com-
mands accepted by JANUS are:

var[index]
Prints out the value of var[index]

var
Prints out all elements of array var

var=n
Sets var[0] to n.

var[index]=n
Sets var[index] to n.

CALL name
Calls procedure name.

UNCALL name
Uncalls procedure name.

SYMBOLS
Types table of all symbols and their attributes.

TRACE
Turns on the trace feature. Lists statements as they are executed,
along with the values of any variables that are modified.

UNTRACE
Turns off the trace feature.

RESET
Resets all variables to zero.

RESET var
Resets all elements of array var to zero.

2

; Factorization program in the time reversible language Janus

num ;Number to factor. Ends up zero

try ;Attempted factor. Starts and ends zero

z ;Temporary. Starts and ends zero

i ;Pointer to last factor in factor table. Starts zero

fact[20];Factor table. Starts zero. Ends with factors in ascending order

procedure factor ;factor num into table in fact[]

from (try=0) & (num>1)

loop call nexttry

from fact[i]#try ;Divide out all occurrences of this

loop i += 1 ; factor

fact[i] += try

z += num/try

z : num

z -= num*try

until (num\try)#0

until (try*try)>num ;Exit early if possible

if num # 1

then i += 1 ;Put last prime away, if not done

fact[i] : num ; and zero num

else num -= 1

fi fact[i] # fact[i-1]

if (fact[i-1]*fact[i-1]) < fact[i] ;Zero try

then from (try*try) > fact[i]

loop uncall nexttry

until try=0

else try -= fact[i-1]

fi (fact[i-1]*fact[i-1]) < fact[i]

call zeroi ;Zero i

procedure zeroi

from fact[i+1] = 0

loop i -= 1

until i = 0

procedure nexttry

try += 2

if try=4

then try -= 1

fi try=3

procedure readf ;Load table of factors (to be multiplied by

read i ; uncalling procedure factor)

from z=0

loop z += 1

read fact[z]

until i=z

z -= i ;zero z

call zeroi

3

list[12] ;List to sort

perm[12] ;Permutation done during sort. Initially the identity permulation

n ;Number of numbers

i j ;Loop counters

procedure sort ;Bubble sort list, permuting perm.

from i=0

loop j += n-2

from j=n-2

loop if list[j] > list[j+1]

then list[j] : list[j+1]

perm[j] : perm[j+1]

fi perm[j] > perm[j+1]

j -= 1

until j=i-1

j -= i-1

i += 1

until i=n-1

i -= n-1

procedure makeidperm ;Add identity permutation to perm. Use to initialize perm

from i=0

loop perm[i] += i

i += 1

until i=n

i -= n

procedure readlist ;Use to initialize list by reading each entry from terminal

from j=0

loop read list[i]

i += 1

until i=n

i -= n

num root z bit

procedure root ;root := floor (sqrt(num))

bit += 1

from bit=1 ;find exponential ball park

loop call doublebit

until (bit*bit)>num

from (bit*bit)>num

do uncall doublebit

if ((root+bit)*(root+bit))<=num

then root += bit

fi ((root/bit)\2) # 0

until bit=1

bit -= 1

num -= root*root

procedure doublebit

z += bit

bit += z

z -= bit/2

4

